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INTRODUCTION

The basic principle of simultaneous tempera-
ture (T) measuring systems is grounded on some
changes in physical properties, such as electrical
conductivity, resistance, capacity, optical absorp-
tion, magnetic susceptibility etc. stimulated by am-
bient temperature variations [1]. Despite time de-
lay in system response on these variations caused
by relative durability of T-influenced effects, the
controlled parameter can be determined finally
with a high accuracy. In contrast, the relative hu-
midity (RH) measurements are based on changes
in physical properties of solid bulk or surface pro-
duced by absorbed water. The greater amount of
absorbed water, the better exploitation sensitivity
of RH-measuring system can be achieved.

To combine both T- and RH-measuring working cy-
cles, the combined resolution built on independent T
determination for conventional RH-sensitive func-
tional element and, vice versa (RH determination
for conventional T-sensitive element) was proposed.
Results in the field of integrated T- and RH- sen-
sors are described in [2 and 3]. The use of spinel-
based NiMn204-CuMn204-MnC0204 mangan-
ites with negative temperature coefficient (NTC)
of electrical resistance for fabrication of disc-type
thermistors and RH-sensitive MgAl204 aluminate
by means of conventional ceramics technology was
described earlier [4-6]. However, modern microe-
lectronics application (T and RH sensors, fire detec-
tors, power-sensing terminations, T-compensating
_ attenuators, etc. [7-10]) require these materials to

be in thick-film performance. The advantages of
screen-printing technology include; high reproduc-
ibility, flexibility, attainment of high reliability by
glass coating, accuracy, yield and inter-changeabili-
ty by functional trimming. These characteristics are
of major importance for the development of the new
generation of sensing electronics [10]. No less im-
portant is the factor of miniaturization for thick-film
elements and systems in a variety of geometrical
configurations. Thus, the development of high-relia-
ble nanostructured thick films and their multi-layers
based on spinel-type compounds for environmental
sensors operating as integrated T-RH sensors are
very important task [11-13].

Thick-film performance of mixed spinel-type man-
ganites restricted by NiMn204-CuMn204-Mn-
Co204 concentration triangle has a number of es-
sential advantages, which are not possible with
other ceramic composites. Within the above system,
the fine-grained semiconductor materials possess-
ing pt-type CUO.INiO.IM“I.zCOI.ﬁO4 and p-type
Cug 1Nig gMnj gCo(y HO4 electrical conductivity
can be easily prepared. Thus, the possibility to prepare
integrated multilayer thick-film spinel-type structures
for principally new device application is opened with
mixed oxymanganospinel ceramics. In addition, the
prepared multilayer thick-film structures involving
semiconductor NiMn204-CuMn204-MnC0204
and dielectric (d-type) MgAl204 spinels can be used
as integrated T and RH environmental sensors with
a broad range of exploitation parameters. The aim
of this work is the development of integrated T and
RH-sensitive thick films and multilayered structures
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- XRD measurements for film based on pt+-conduc-
. tive Cu0_1N10I1C01_6Mn1.204 ceramics show,
_ that this film contains one cubic spinel crystalline

phase (MgAI204 structural type, space group Fd

' m, a=8.30130(9) nm, V=0.572057(11) nm3, Fig.
= 3,a). The residuals are as follows: RBragg=0.0450,

RF=0.0375, X2=7.60, Rp=0.0452,
Rwp=0.0566. Thick film based on p-conductive
Cug 1Nig gCo oMn| gO4 ceramics contains two
crystalline phases: cubic spinel with a=8.3794(1)
nm, V=0.58835(1) nm3, RBragg=0.0498,

. RF=0.0396, X22=3.61, Rp=0.0360, Rwp=0.0456)

and traces of NiO-based phase of NaCl type and
Fm m space group (Fig. 3,b).

Previously, formation of such NiO-based
secondary phase traces was observed in
Cug {Nig gCop HMnj gO4 ceramics sintered for
1 hour at 1200 °C due to decomposition reactions
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Fi1c. 2 ToroLOGY OF P+-p (LEFT) AND P+-D (RIGHT) THICK-FILM STRUCTURES
OBTAINED WITH 3D-pROFILOGRAMPH RODENSTOCK RM600

[19,20]. We expected that reverse reactions in ce-
ramics will proceed during following long-term
sintering for 24 hours at 920 °C and a single-phase
cubic spinel will be obtained. It can be seen that trac-
es of secondary phase are present after the sintering
procedure. This suggested that the duration of this
additional thermal treatment was insufficient, i.e.
sintering of Cug 1Nig gCogy oMn| gO4ceramics
was not perfect for a single-phase material. How-
ever, XRD studies for p+-conductive thick film
based on Cug 1Nig Mn; 2Coy gO4 ceramics
show only spinel phase, pattern of alumina sub-
strate and did not reveal any traces of NiO-phase.
It can be concluded that the reverse reactions came
to end during thermal treatment of films.

XRD patterns of d-type MgAl,Oy4 thick film tes-
tify in a favor of main spinel-type MgAl,04 phase
of 99.8 % (space group Fd m) with lattice param-
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Fig. 4. Observed and calculated XRD profiles for
d-type MgAl, Oy thick film
(the overhead row of reflexes is spinel phase,
the lower row of reflexes is MgO phase)

T-sensitive p+ and p-conductive thick films based
on spinel-type NiMn204-CuMn,O4-MnCoy0y4
ceramics possess good linear electrophysical char-
acteristics in the region from 298 to 358 K in semi-
logarithmic scale (Fig. 5). The values of B con-
stants were 3589 and 3630 K for p-, p+-conductive
thick films, respectively.
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Fig. 5 Exploitation resistance-temperature
characteristics of p- and p+-conductive thick films

Dielectric d-type RH-sensitive thick film based
on MgAl,O4 ceramics possesses good linear de-
pendence of electrical resistance without hyster-
esis in the range of RH=40-99 % (Fig. 6). Since
all components (p-, p+- and d-type thick films) are
of the same chemical type (spinel-like) and pos-
sess high temperature/humidity sensitivities, they
will be positively distinguished not only by wider

. % :
functionality (simultaneous temperature-humidity -
sensing), but also unique functional reliability and 1
stability. 1
To prepare such multifunctional T-RH-sensitive i
elements, we used typical design performance in -
respect to the scheme shown in Fig. 1, where the
RH-sensitive d-type layer is placed between p+
and p-type layers (p+-d-p-structure). Within pro-
posed configuration, a several simultaneous func- -
tions will be available via resistance measurements
between different points of this multifunctional el-
ement.
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CONCLUSIONS

T-sensitive thick-film elements based on spinel-
type NiMn204-CuMn204-MnC02O4 manganites
with p+ and p-type of electrical conductivity and
dielectric MgAl,Oy thick films were prepared us-
ing ecological glass constituents. These thick films
can be used to produce multifunctional integrated
p+-d-p T and RH sensors for effective environ-
mental sensing, ecological monitoring and control.
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