LUMDETR 2012

8th International Conference on Luminescent Detectors and Transformers of Ionizing Radiation

> September 10 - 14, 2012 Halle (Saale), Germany www.LUMDETR2012.de

Edited by Stefan Schweizer and Bernd Ahrens

Bookof

Abstracts

organized by

Luminescence properties of Pbl₂ nanometer-sized particles embedded in Cdl₂ matrix

I. M. Bolesta¹, N. V. Gloskovskaya², M. R. Panasyuk¹, I. Rovetsky¹, L. I. Yarytska³, and <u>A. S. Voloshinovskii¹</u>

¹Ivan Franko Lviv National University, Lviv, 79000, Ukraine ²Bogolyubov Institute for Theoretical Physics, Nat. Acad. Sci. of Ukraine, Kyiv, 03680, Ukraine ³Lviv State University of Vital Activity Safety, Min. Emerg. of Ukraine, Lviv, 79007, Ukraine

Layered compounds of CdI₂ and PbI₂ have isomorphic structure and similar lattice parameters: a = 4.24 Å, c = 6.84 Å; a = 4.56 Å, c = 6.96 Å, respectively. 4H-polytype is the most common for CdI₂ and 2H-polytype – for PbI₂.

Lead iodide nanometer-sized structures formed in CdI_2 -PbI₂ crystal system with impurity content from 10^{-5} to 5 mol % are studied by luminescence spectroscopy in the temperature range 4.2 - 150 K and atomic-force microscopy methods. It has been shown that PbI₂ nanoparticles are located in the plane of cadmium iodide layer and also along the linear defects of the structure.

Existence of the two types of nanocrystalline impurity centres with the same $4H-PbI_2$ structure, but different spectral characteristics is established by the luminescence measurements.

The first type of centres exhibits luminescence which is excited in the fundamental absorption region and in the band of small-radius impurity exciton (3.23 eV) as well [1]. Their photoluminescence spectra in various temperature ranges depend on the exciton interaction with phonons and defects of crystal structure. Other centres reveal one photoluminescence band 2.14 eV excited in both cadmium iodide and lead iodide fundamental absorption region and low-energy band edge of the impurity exciton (3.16 eV).

We suggest that the luminescence centres of the first type are associated with Pbl₂ nanocrystals and the energy transfer to them is realized predominately by the excitonic mechanism. Obviously, the centres of the second type arise due to Pbl₂ nanocrystals located along the linear defects of Cdl₂ structure and the electron-hole mechanism prevails in their excitation.

Isolated Pb⁺⁺-centres, as we suppose, are responsible for the photoluminescence band 2.25 eV. According to the results of X-ray analysis only one third of PbI₂ embedded in CdI₂ lattice exists in the molecular state, what confirms our conclusion.

I. M. Bolesta, V. V. Vistovsky, N. V. Gloskovskaya, M. R. Panasyuk, L. I. Yarytskaya. *Phys. Solid State* 53, 799 (2011).