ОГНЕЗАЩИТНЫЕ ПОКРЫТИЯ ДЛЯ ЦЕЛЮЛОЗОСОДЕРЖАЩИХ ИЗДЕЛИЙ

Башинський О.И., Гуцуляк Ю.В., Вовк С.Я. Львовский государственный университет безопасности жизнедеятельности, г. Львов, Украина

Проблему огнезащиты целлюлозосодержащих изделий можно решить путем использования антипиренов на основе азот-, фосфор -и галогенсодержащих органических и неорганических соединений. Такие средства содержат в своем составе горючие вещества, уменьшает перспективу их использования, а также обладают высокой дымообразующей способностью и токсичностью продуктов горения. При обработке указанными средствами целлюлозосодержащих материалов на их поверхности кристаллизуются соли, которые приводят к потере защитных свойств во времени и ухудшения эстетических свойств.

Разработаны составы огнезащитных покрытий на основе силицийорганичних связок, оксидного, силикатного и волокнистого наполнителей. Наличие в составе защитного покрытия связи, устойчивой к воздействию микроорганизмов и температуры (до $300\,^{\circ}\mathrm{C}$) значительно расширяет области его использования. Введение в его состав бактерицидных и тугоплавких оксидов (ZnO, Al $_2\mathrm{O}_3$) в определенных соотношениях значительно улучшает био - и огнестойкость. Добавление каолина способствует получению седиментационноустойчивых исходных композиций для защитных покрытий и повышает огнестойкость за счет образования паров воды при его разложении при нагревании. Благодаря наличию силицийорганической связки и каолинового волокна в составе покрытия, оно является эластичным.

Использование в качестве полисилоксановой связки карборансилоксана за счет наличия в нем бора улучшается биоогнезащита покрытия. Выходные композиции получали путем совместного диспергирования исходных компонентов в фарфоровых шаровых мельницах. В процессе диспергации проходит разрушение кристаллической решетки оксидного наполнителя, прививания к его поверхности фрагментов карборансилоксана с созданием агрегативноустойчивых исходных композиций для защитных покрытий.

Покрытие на исследуемый объект - древесину наносили методом распыления толщиной 500 ... 700 мкм. Текстильные целлюлозосодержащих материалы просачивались в исходной композиции 10 ... 25 с для создания защитного слоя толщиной 500 ... 700 мкм. Отверждение защитных покрытий проходило при комнатной температуре в течение 24 часов.

Экспериментально установлено, что разработанные составы защитных покрытий отмечаются бактерицидными свойствами при эксплуатации древесины и целлюлозосодержащих текстильных изделий вследствие образования в составе покрытия под действием микроорганизмов Zn $(OH)_2$ и Al $(OH)_3$. При нагревании материала с защитным покрытием вследствие термоокисдной деструкции карборансилоксана и выделение значительного количества газообразных продуктов проходит вспучивания защитного слоя с созданием огнестойкой теплоизоляционной структуры. Значительное содержание коксового остатка (до 20%) способствует повышению огнестойкости целлюлозосодержащих материалов.

Использование разработанных составов покрытий существенно увеличивает биоустойчивость целлюлозосодержащих изделий при их эксплуатации в условиях действия агрессивных атмосферных факторов и улучшает огнестойкость и снижает горючесть в случае пожара.